
Parallelization of Automotive Engine Control Software

On Embedded Multi-core Processor Using OSCAR Compiler

Yohei Kanehagi, Dan Umeda, Akihiro Hayashi,

Keiji Kimura and Hironori Kasahara
Graduate School of Fundamental Science and Engineering, Waseda University

3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.

Tel: +81-3-5286-3018, Email: {ykane, umedan, ahayashi} @kasahara.cs.waseda.ac.jp,

kimura@apal.cs.waseda.ac.jp, kasahara@waseda.jp

(Keywords: multi-core processor, automobile, automatic parallelization, embedded system)

Ⅰ. Introduction

The next-generation automobiles are required to be more safe, comfortable and energy-efficient. These

requirements can be realized by integrated control systems with enhanced electric control units, or real-time

control system such as engine control and enhanced information system such as human and other cars

recognition, navigations considering traffic conditions including the occasions of natural disasters. For

example, sophisticating engine control algorithms requires performance enhancement of microprocessors to

satisfy real-time constraints. Use of multi-core processors is a promising approach to realize the

next-generation automobiles integrated control system. In terms of multi-core processors in the automotive

control, the previous works include improvements of reliability by performing redundant calculation [1] and

improvements of throughput by functional distribution [2] rather than improvement of response time, or

performance by parallel processing. To the best of our knowledge, parallel processing of the automotive

control software to reduce response time has not been succeeded on multi-core processors because the

program consists of conditional branches and small basic blocks. On the other hand, this paper is the first

paper has successfully parallelized the practical automotive engine control software using automatic

multigrain parallelizing compiler, or the OSCAR Compiler has been developed by the authors for more than

25 years. The OSCAR compiler parallelizes automotive programs by utilizing coarse grain task parallelism

with newly developed parallelism enhanced methods like the branch duplication instead of loop parallelism.

Performance of the hand-written engine control programs provided by Toyota Motor Corp. on the RP-X

having eight SH4A processor cores developed by Renesas, Hitachi, Tokyo Institute of technology and

Waseda University is evaluated. The evaluation shows speedups of 1.54 times with 2 processor cores

compared with the case of an ordinary sequential execution.

Ⅱ. OSCAR Automatic Parallelizing Compiler

The OSCAR Complier realizes an automatic parallelization of programs written in Parallelizable C [3],

which is very close to MISRA C used in automobile industry for reliability and productivity or Fortran77.

The OSCAR Compiler’s input is a sequential program and its output is an executable for a target multi-core.

The OSCAR Compiler exploits multigrain parallelism including coarse-grain parallelism, loop level

parallelism and fine-grain parallelism [4]. The OSCAR Compiler decomposes a program into coarse grain

tasks, namely macro-tasks (MTs), such as basic block (BB), loop (RB), and function call or subroutine call

(SB). Macro-tasks can be hierarchically defined inside each sequential loop or function. After generation of

macro-tasks, data dependencies and control flow among macro-tasks are analyzed in each nested layer, and

hierarchical macro-flow graphs (MFGs) representing control flow and data dependencies among

macro-tasks are generated as shown in Fig. 1. Next, to exploit coarse grain task parallelism among

macro-tasks, the Earliest Executable Condition analysis [5] is applied to each macro-flow graph. By this

analysis, a macro-task graph (MTG) is generated for each macro-flow graph representing coarse grain task

parallelism.

Ⅲ. Parallelization of Engine Control Software

Target engine control programs like crankshaft control are composed of conditional branches and small

basic blocks without parallelizable loops. For this reason, current product compilers cannot parallelize this

kind of control programs. Also, accelerator cannot apply to the application. The traditional loop

parallelization technique widely used for multi-core processors can not apply the target engine control code

since the program is composed of a series of conditional branches, assignment statements, and subroutine
calls. Fig. 2 shows a MTG of the engine control program. As shown in Fig. 2, sb1 and sb12 can be executed

in parallel with other tasks. However, because the execution times of sb1 and sb12 account for just 1% of

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

the whole execution time, an inline expansion is applied to other tasks in order to exploit more parallelism

over hierarchies or nested levels. In the proposed method, to improve coarse grain task parallelism the

OSCAR Compiler applies selective inline expansion to function calls which have a coarse grain parallelism

inside callee functions and also have large execution cost to exploit sufficient parallelism keeping the code

size as small as possible. Fig. 3 shows a MTG of the restructured program by which an inline expansion was

applied. As shown in Fig. 3, more coarse grain parallelism is exploited than that of Fig. 2. However, the

execution time of block36 accounts for about 70% of the whole execution time and block36 has coarse

grain parallelism inside. Fig. 4 shows a simplified image of the block36. There are sb2, sb3 and sb4 inside a

then-clause of the if-statement of the left side of Fig. 4. These subroutine calls are assigned onto same

processor core though. These coarse grain parallelisms among them since the if-statement and these

subroutine calls are packed into the same MT to minimize scheduling overhead. However, by duplicating

if-statement as shown in the right side of Fig. 4, and by packing each if-statement and each subroutine call

into a MT, parallelism among those subroutine calls can be efficiently exploited. The duplication applies as

a condition that a conditional expression does not change in sb2, sb3 and sb4. Fig. 5 shows a MTG of the

program after the inline expansion and the conditional branch duplication are applied. The graph’s critical

path accounts for about 60% of the whole execution time. Selective inline expansion and conditional branch

duplication allow us to exploit remarkable coarse grain parallelism.

Ⅳ. Performance Evaluation of Parallelized Engine Control Code on RP-X

This paper uses the embedded multi-core processor RP-X [5] to evaluate the performance of parallelized

automotive engine control code. The RP-X processor has eight 648MHz SH-4A general-purpose processor

cores, four 324MHz FEGA accelerator cores, two matrix processor “MX-2” and video processing unit

“VPU5”, as shown in Fig. 6. RP-X can change the clock frequency of processor cores, such as 648MHz,

324MHz, 162MHz and 81MHz. In this paper, we set the clock frequency of processor cores as 81MHz in

order to bring close to it actually used automotive control unit. Fig. 7 shows the result of the evaluation of

the automotive engine control software parallelized by the OSCAR Compiler. Our proposed method attains

speedups of 1.54 times with 2 processor cores compared with the sequential execution.

Ⅴ. Conclusions

This paper has described parallelization of the automotive engine control software by use the OSCAR

Compiler. The original hand-written sequential engine control code is restructured with the conditional

branch duplication and selective inline expansion in order to exploit coarse grain task parallelism. The

parallelized program is evaluated on the embedded multi-core RP-X. As a result, we use 2 cores on RP-X,

and attain 1.54 times speed-up compared with sequential execution. The result shows that the OSCAR

Compiler can exploit parallelism from the automotive engine control software, which is composed of a

series of conditional branches, assignment statements and subroutine calls. Currently, the authors are

evaluating the performance of the proposed method using engine control processors.

Ⅵ. Acknowledgements

This work was supported by Toyota Motor Corporation. I would like to express appreciation to Mr.

Mitsuo Sawada from Toyota Motor Corporation.

References
[1] Kyungil Seo, Taeyoung Chung, Hyundong Heo, Kyongsu Yi, and Naehyuck Chang, “An Investigation into

Multi-Core Architectures to Improve a Processing Performance of the Unified Chassis Control Algorithms,”

SAE Int.J.Passeng.Cars-Electron.Electr.Syst., pp. 53-62, 2010.

[2] Dinesh Padole, and Preeti Bajaj, “FUZZY ARBITER BASED MULTI CORE SYSTEM-ON-CHIP

INTEGRATED CONTROLLER FOR AUTOMOTIVE SYSTEMS: A DESIGN APPROACH,” CCECE, pp.

1937-1940, 2008.

[3] M. Mase, Y. Onozaki, K. Kimura, and H. Kasahara, “Parallelizable c and its performance on low power high

performance multicore processors,” In Proc. of 15
th

 Workshop on Compilers for Parallel Computing, Jul.

2010.

[4] H. Kasahara, H. Honda, A. Mogi, A. Ogura, K. Fujiwara, and S. Narita, “A multi-grain parallelizing

compilation scheme for OSCAR(Optimally scheduled advanced multiprocessor,” In Proceedings of the

Fourth International Workshop on Languages and Compilers for Parallel Computing, pp. 283-297, August

1991.

[5] H. Honda, M. Iwata, and H. Kasahara, “Coarse grain parallelism detection scheme of a Fortran program,”

Trans. of IEICE, Vol.J73-D-1, No.12, pp. 951-960, Dec. 1990.

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

[6] Y. Yuyama, M. Ito, Y. Kiyoshige, Y. Nitta, S. Matsui, O. Nishii, A. Hasegawa, M. Ishikawa, T. Yamada, J.

Miyakoshi, K. Terada, T. Nojiri, M. Satoh, H. Mizuno, K. Uchiyama, Y. Wada, K. Kimura, H. Kasahara, and

H. Maejima, “A 45nm 37.3gops/w heterogeneous multi-core soc,” IEEE International Solid-State Circuits

Conference, ISSCC, pp. 100-101, Feb. 2010.

 Fig. 1. Macro-flow graph and macro-task graph

 Fig. 2. Macro-task graph of the automotive

engine control software

 Fig. 3. Macro-task graph of the automotive

engine control software after inline expansion

 Fig. 4. Conditional branch duplication

 Fig. 5. Macro-task graph of the automotive

engine control software after inline expansion and

conditional branch duplication

Fig. 6. The embedded multi-core processor

RP-X

 Fig. 7. The evaluation of automatic

parallelization of the automotive engine control

software on RP-X

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

Parallelization of Automotive Engine
Control Software On Embedded Multi-
core Processor Using OSCAR Compiler

Yohei Kanehagi, Dan Umeda,

Akihiro Hayashi, Keiji Kimura

and Hironori Kasahara

2013/04/19 Cool Chips XVI 1

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

Faster Processing of Engine Control
Programs for Future Automotives

 Safety, comfort and energy-efficiency are more necessary
for future automobile

 Faster processing of Engine Control Programs is required

 New sophisticated control function will be used

 Parallel processing of engine control programs on multi-core
processors is required
 Performance with single core processor is limited by power and heat

2013/04/19 Cool Chips XVI 2

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

void main()
{
 sb1();
 sb2();
 bb3;
 sb4();
 if (cond1)
 {
 bb6;
 if (cond2)
 {
 sb7();
 }
 if (cond3)
 {
 sb9();
 }
 }
 sb12();
}

Motivation : Parallelizing Crankshaft Program

2013/04/19 Cool Chips XVI 3

No loops

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

Parallelizing Automotive Control
Programs on Multi-core processors

 Automotive crankshaft program

 Two Challenges

1. Real-time constraints

– minimizing overhead is important

2. It is hard to parallelize since there are many conditional branches,
assign statements, but few loops inside them.
– Current product compilers such as Intel and IBM can not parallelize this program

– Current accelerators as GPU and FEGA is applicable to this program

 No one has succeeded to parallelize this program

We explore the possibility of utilization of multi-core
processor for next-generation automobiles

 As the first step, this work uses 2 cores
– Since the next-generation automobiles are going to use 2 cores

2013/04/19 Cool Chips XVI 4

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

OSCAR Compiler for Crankshaft
Control Programs

OSCAR Compiler

 Effective Automatic Parallelization

Utilization of coarse grain parallelism
in this case
 Our approach improves coarse grain parallelism

by aggregating fine grain statements and duplicating
conditional branches

2013/04/19 Cool Chips XVI 5

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

Related Works

 Few works are working on using a multi-core
processor for automotive software

1. Improving Reliability of Control Software (SAE’10)
 by performing redundant calculation with a multi-core processor

2. Improving Throughput of Control Software (ECE’08, SIES’11)
 by performing functional distribution with a multi-core processor

Can not improve response time

Can improve response time

2013/04/19 Cool Chips XVI 6

Our approach is parallelizing with OSCAR compiler
OSCAR allows us to perform workload distribution automatically

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

OSCAR Parallel Compiler

 Generate a Multi-threaded program
from a sequential C or Fortran

 Multi-grain parallelization

1. Coarse grain parallelization

2. Loop level parallelization

3. Fine grain parallelization

 Task scheduling

 Static task scheduling
 Schedule tasks to CPUs at compiler time

 Dynamic task scheduling
 Schedule tasks to CPUs at runtime

 OSCAR generates dynamic scheduling routines

2013/04/19 Cool Chips XVI 7

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

OSCAR Compiler Exploit Parallelism

2013/04/19 Cool Chips XVI

8

Macro-Flow Graph Macro-Task Graph

(Condition for determination of MT Execution)

AND

(Condition for Data access)

Ex. Earliest Executable

Condition of MT6

MT2 takes a branch

that guarantees MT4 will be executed

OR

MT3 completes execution

Earliest Executable Condition

: Data Dependency

: Control flow

: Control Branch

 Decomposes a program into coarse grain tasks, or macro tasks(MTs)

1. BB (Basic Block)

2. RB (Repetition Block, or loop)

3. SB (Subroutine Block, or function)

 Generates MTG from MFG

1. Macro Flow Graph (MFG): control-flow and data dependency

2. Macro Task Graph (MTG): coarse grain task parallelism

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

Proposed Parallel Processing Method
for Engine Control Programs

2013/04/19 Cool Chips XVI 9

 Decreasing overhead of task scheduling and
improvement of coarse grain parallelism are necessary

1. Coarse grain parallelization

 To detect parallelism among conditional branches and
assign statements from the programs and not loops

2. Static task scheduling

 To allow us to guarantee real-time constraints and
reduce run-time overhead

3. Restructuring of inline expansion and duplicating if-
statements

 To extract more parallelism among coarse grain tasks
over conditional branches

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

1 Coarse Grain Parallelization

2013/04/19 Cool Chips XVI 10

void main()
{
 sb1();
 sb2();
 bb3;
 sb4();
 if (cond1)
 {
 bb6;
 if (cond2)
 {
 sb7();
 }
 if (cond3)
 {
 sb9();
 }
 }
 sb12();
}

No loop parallelism

MTG of crankshaft programs

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

2 Static Scheduling

2013/04/19 Cool Chips XVI 11

Unable to assign tasks such as sb7 statically

due to conditional branches.

The compiler cannot see if the branch is taken or not statically.

Fusing tasks with hiding all control-flow edges in
MTG to avoid dynamic scheduling.

To allow us to guarantee real-time constraints
and reduce run-time overhead

However

MFG of sample program before task fusion

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

Task Fusion for Static Scheduling

2013/04/19 Cool Chips XVI 12

MFG of sample program before task fusion

Fuse branches and succeed task

MTG of sample program

before task fusion

MFG after task fusion

MTG of sample program

after task fusion

Compiler do not know which

task such as bb2 and bb3 would

be taken

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

MTG of Crankshaft Program Before and After
Task Fusion for Static Scheduling

2013/04/19 Cool Chips XVI 13

There are not enough parallelism

sb1 and sb6 account for just
1% of whole execution time.

sb4 and block5 account for

over 90% of whole execution
time.

Can not schedule MT at compile time

MTG of crankshaft program before task

fusion
MTG of crankshaft program after task

fusion

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

3.1 Restructuring : Inline Expansion
 Inline expansion is effective

 To increase coarse grain parallelism

 Expands functions having inner parallelism

2013/04/19 Cool Chips XVI 14

bb1 inside sb2 is

data-dependent on

sb1

sb3 is data-

dependent on sb2

inside sb2 MTG of sample program before

inline expansion

MTG of sample program

after inline expansion

Improve coarse grain parallelism

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

 Duplicating if-statements is effective
 To increase coarse grain parallelism

 Duplicate fused tasks having inner parallelism

3.2 Restructuring: Duplicating If-statements

2013/04/19 Cool Chips XVI 15

Improve coarse grain parallelism

func1();
if (condition) {
 func2();
 func3();
 func4();
}

func1();
if (condition) {
 func2();
}
if (condition) {
 func3();
}
if (condition) {
 func4();
}

Sb1 depends sb5

No

dependemce

Copying if-

conditions

each functions

MTG of sample program before

duplicating if-statements

MTG of sample program after

duplicating if-statements

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

MTG of Crankshaft Program Before and After
Inline Expansion and Duplicating If-statements

2013/04/19 Cool Chips XVI 16

Successfully increased coarse grain parallelism

Critical Path(CP)

CP accounts for
about 60% of whole

execution time.

Critical Path(CP)

CP accounts for over
90% of whole

execution time.

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

Embedded Multi-core
Processor RPX

 SH-4A 648MHz * 8
 FE-GA 324MHz * 4
 Instruction cache: 32KB/core
 Data cache: 32KB/core
 ILM, DLM: 16KB/core
 URAM: 64KB/core

2013/04/19 Cool Chips XVI 17

 Change the clock frequency of processors
core
 648MHz, 324MHz, 162MHz, 81MHz
 Set 81MHz in order to bring close to it

actually used automotive control unit

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

Evaluation of Crankshaft Program
with Multi-core Processors

 Attain 1.54 times speedup on RPX running at 81MHz
 Theoretical speedup ratio is around 1.6

 due to execution and thread overheads

2013/04/19 Cool Chips XVI 18

1.00

1.54
0.57

0.37

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00

0.50

1.00

1.50

2.00

1 core 2 core

exe
cu

tio
n

 tim
e(u

s)
sp

ee
d

u
p

 r
at

io

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

Conclusion

 Parallelization of automotive control program with OSCAR
compiler
 Current compilers and accelerators are not applicable

 Program has no loop, but has conditional branches and assign statements

 Utilization of coarse grain parallelism and static scheduling
in OSCAR compiler

 The first technique which exploits coarse grain parallelism of
automotive control programs
 Inline expansion
 Duplicating if-statements

 We attained 1.54x speedup on embedded multi-core

RPX running at 81MHz for the first time

2013/04/19 Cool Chips XVI 19

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

Thank you for your attention!

2013/04/19 Cool Chips XVI 20

COOL Chips XVI Yokohama Joho Bunka Center, Yokohama, April 17-19, 2013

